Monday, 30 January 2017

Durchschnittlicher Ursprung

Auswählen der besten Trendlinie für Ihre Daten Wenn Sie in Microsoft Graph eine Trendlinie zu einem Diagramm hinzufügen möchten, können Sie einen der sechs verschiedenen Trendstreckentypen auswählen. Die Art der Daten, die Sie festlegen, bestimmt die Art der Trendlinie, die Sie verwenden sollten. Trendline-Zuverlässigkeit Eine Trendlinie ist am zuverlässigsten, wenn ihr R-squared-Wert auf oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten passt, berechnet Graph automatisch seinen R-Quadrat-Wert. Wenn Sie möchten, können Sie diesen Wert in Ihrem Diagramm anzeigen. Eine lineare Trendlinie ist eine am besten passende gerade Linie, die mit einfachen linearen Datensätzen verwendet wird. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten einer Linie ähnelt. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Im folgenden Beispiel zeigt eine lineare Trendlinie deutlich, dass der Umsatz der Kühlschränke über einen Zeitraum von 13 Jahren konstant gestiegen ist. Beachten Sie, dass der R-Quadrat-Wert 0.9036 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Eine logarithmische Trendlinie ist eine am besten passende gekrümmte Linie, die am nützlichsten ist, wenn die Rate der Änderung in den Daten schnell zunimmt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Das folgende Beispiel verwendet eine logarithmische Trendlinie, um das prognostizierte Bevölkerungswachstum von Tieren in einem festen Raum zu veranschaulichen, in dem die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,9407 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Eine Polynom-Trendlinie ist eine gekrümmte Linie, die verwendet wird, wenn Daten schwanken. Es eignet sich zum Beispiel für die Analyse von Gewinnen und Verlusten über einen großen Datensatz. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Eine Ordnung 2 Polynom-Trendlinie hat in der Regel nur einen Hügel oder Tal. Ordnung 3 hat im Allgemeinen ein oder zwei Hügel oder Täler. Auftrag 4 hat in der Regel bis zu drei. Das folgende Beispiel zeigt eine Polynomlinie der Ordnung 2 (ein Hügel), um die Beziehung zwischen Geschwindigkeit und Benzinverbrauch zu veranschaulichen. Beachten Sie, dass der R-Quadrat-Wert 0,9474 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Eine Leistungs-Trendlinie ist eine gekrümmte Linie, die am besten mit Datensätzen verwendet wird, die Messungen vergleichen, die mit einer spezifischen Rate zunehmen, zum Beispiel die Beschleunigung eines Rennwagens in Intervallen von einer Sekunde. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Im folgenden Beispiel werden Beschleunigungsdaten durch Zeichnen der Distanz in Metern pro Sekunde dargestellt. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,9923 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Eine exponentielle Trendlinie ist eine gekrümmte Linie, die am nützlichsten ist, wenn Datenwerte mit zunehmend höheren Raten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Im folgenden Beispiel wird eine exponentielle Trendlinie verwendet, um die abnehmende Menge an Kohlenstoff 14 in einem Objekt zu veranschaulichen, während es altert. Beachten Sie, dass der R-Quadrat-Wert 1 ist, dh die Linie passt perfekt zu den Daten. Eine gleitende durchschnittliche Trendlinie glättet Fluktuationen in Daten, um ein Muster oder einen Trend deutlicher zu zeigen. Eine gleitende durchschnittliche Trendlinie verwendet eine bestimmte Anzahl von Datenpunkten (die von der Option Periode festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Trendlinie. Wenn Period beispielsweise auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Durchschnitt der zweiten und dritten Datenpunkte wird als der zweite Punkt in der Trendlinie verwendet, und so weiter. Im folgenden Beispiel zeigt eine gleitende durchschnittliche Trendlinie ein Muster in der Anzahl der über einen Zeitraum von 26 Wochen verkauften Häuser. Forecasting mit Zeitreihenanalyse Was ist Prognose Forecasting ist eine Methode, die umfangreich in der Zeitreihenanalyse verwendet wird, um eine Antwortvariable vorherzusagen, Wie monatliche Gewinne, Bestände oder Arbeitslosenzahlen für einen bestimmten Zeitraum. Prognosen basieren auf Mustern in bestehenden Daten. Zum Beispiel kann ein Lagerverwalter modellieren, wie viel Produkt zu bestellen für die nächsten 3 Monate auf der Grundlage der letzten 12 Monate der Aufträge. Sie können eine Vielzahl von Zeitreihen Methoden, wie Trendanalyse, Zersetzung oder einzelne exponentielle Glättung verwenden, Muster in den Daten zu modellieren und diese Muster in die Zukunft extrapolieren. Wählen Sie eine Analysemethode durch, ob die Muster sind statisch (konstant über die Zeit) oder dynamisch (Veränderung im Laufe der Zeit), die Art der Entwicklung und saisonalen Komponenten, und wie weit wollen Sie zu prognostizieren. Bevor Sie Prognosen erstellen, passen Sie mehrere Kandidatenmodelle an die Daten an, um zu bestimmen, welches Modell am stabilsten und genau ist. Prognosen für eine gleitende Durchschnittsanalyse Der Anpassungswert zum Zeitpunkt t ist der nicht zentrierte gleitende Durchschnitt zum Zeitpunkt t -1. Die Prognosen sind die angepassten Werte am Prognoseursprung. Wenn Sie 10 Zeiteinheiten prognostizieren, wird der prognostizierte Wert für jedes Mal der passende Wert am Ursprung sein. Für die Berechnung der gleitenden Mittelwerte werden Daten bis zum Ursprung verwendet. Sie können die lineare Bewegungsdurchschnittsmethode verwenden, indem Sie fortlaufende gleitende Mittelwerte berechnen. Die Linear Moving Averages Methode wird oft verwendet, wenn es einen Trend in den Daten. Zuerst berechnen und speichern Sie den gleitenden Durchschnitt der Originalreihe. Dann wird der gleitende Durchschnitt der zuvor gespeicherten Spalte berechnet und gespeichert, um einen zweiten gleitenden Durchschnitt zu erhalten. Bei der naiven Prognose ist die Prognose für die Zeit t der Datenwert zum Zeitpunkt t -1. Mit gleitenden Durchschnitt Verfahren mit einem gleitenden Durchschnitt der Länge ein gibt naive Prognose. Prognosen für eine einzelne exponentielle Glättungsanalyse Der eingepasste Wert zum Zeitpunkt t ist der geglättete Wert zum Zeitpunkt t-1. Die Prognosen sind der passende Wert am Prognoseursprung. Wenn Sie 10 Zeiteinheiten prognostizieren, wird der prognostizierte Wert für jedes Mal der passende Wert am Ursprung sein. Für die Glättung werden Daten bis zum Ursprung verwendet. In naiver Prognose ist die Prognose für die Zeit t der Datenwert zum Zeitpunkt t-1. Führen Sie einzelne exponentielle Glättung mit einem Gewicht von einem zu tun naive Prognose. Prognosen für eine doppelte exponentielle Glättungsanalyse Die doppelte exponentielle Glättung nutzt die Pegel - und Trendkomponenten, um Prognosen zu generieren. Die Prognose für m Perioden, die vor einem Zeitpunkt t liegen, ist L t mT t. Wobei L t der Pegel ist und T t der Trend zur Zeit t ist. Für die Glättung werden Daten bis zur Prognoseursprungzeit verwendet. Prognosen für Winters-Methode Die Winters-Methode verwendet die Pegel-, Trend - und Saisonkomponenten, um Prognosen zu generieren. Die Prognose für m Perioden voraus von einem Punkt zum Zeitpunkt t ist: wobei L t ist das Niveau und T t ist der Trend zum Zeitpunkt t, multipliziert mit (oder hinzugefügt, um für ein additives Modell) die saisonale Komponente für den gleichen Zeitraum aus dem vorheriges Jahr. Winters Methode verwendet Daten bis zur Prognose Ursprungszeit, um die Prognosen zu generieren. Moving Average - MA BREAKING DOWN Moving Average - MA Als SMA-Beispiel betrachten Sie eine Sicherheit mit den folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die Ersten 10 Tagen als ersten Datenpunkt. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge der zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Die Abwärtsmomentum wird mit einem bärischen Übergang bestätigt, der auftritt, wenn eine kurzfristige MA unter einem längerfristigen MA liegt.


No comments:

Post a Comment