Friday, 20 January 2017

Exponential Gewichtet Gleitende Durchschnittliche Volatilität In Excel

Exploration der exponentiell gewichteten Moving Average Volatilität ist die häufigste Maßnahme für das Risiko, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, lesen Sie unter Verwenden der Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächliche Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Also, wenn alpha (a) ein Gewichtungsfaktor (speziell eine 1m) ist, dann eine einfache Varianz sieht etwa so aus: Die EWMA verbessert auf einfache Varianz Die Schwäche dieser Ansatz ist, dass alle Renditen das gleiche Gewicht zu verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Aktienkursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit verringern, so dass eine einfache Varianz künstlich hoch sein könnte. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkende Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen durch ein Minus-Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.) Exponential Moving Average (EMA) Explained Wie wir in der vorherigen Lektion gesagt haben, können einfache gleitende Durchschnitte durch Spikes verzerrt werden. Wir beginnen mit einem Beispiel. Let8217s sagen, wir planen eine 5-Periode SMA auf der Tages-Chart von EURUSD. Die Schlusskurse für die letzten 5 Tage sind wie folgt: Der einfache gleitende Durchschnitt würde wie folgt berechnet: (1.3172 1.3231 1.3164 1.3186 1.3293) 5 1.3209 Einfach genug, rechts Gut, wenn es einen Nachrichtenbericht am zweiten Tag gibt, der den Euro verursacht Über die Tafel fallen. Dies bewirkt, dass EURUSD stürzt und bei 1,3000 schließt. Let8217s sehen, was Wirkung dies auf die 5 Periode SMA haben würde. Der einfache gleitende Durchschnitt würde folgendermaßen berechnet werden: Das Ergebnis des einfachen gleitenden Durchschnitts wäre viel niedriger und es würde Ihnen die Vorstellung geben, dass der Preis tatsächlich unterging, wenn in Wirklichkeit Tag 2 nur ein einmaliges Ereignis war Verursacht durch die schlechten Ergebnisse eines Wirtschaftsberichts. Der Punkt, den wir machen wollen, ist, dass manchmal der einfache gleitende Durchschnitt zu einfach wäre. Wenn es nur eine Möglichkeit, dass Sie diese Spikes herausfiltern könnte, so dass Sie wouldn8217t die falsche Idee. Hmm8230 Warten Sie eine minute8230 Yep, gibt es einen Weg It8217s genannt Exponential Moving Average Exponential Moving Averages (EMA) geben mehr Gewicht auf die jüngsten Perioden. In unserem Beispiel oben würde die EMA mehr Gewicht auf die Preise der letzten Tage legen, was die Tage 3, 4 und 5 sein würde. Dies würde bedeuten, dass die Spike am Tag 2 von geringerem Wert sein würde und wouldn8217t so groß Eine Wirkung auf den gleitenden Durchschnitt, wie es wäre, wenn wir für einen einfachen gleitenden Durchschnitt berechnet hätten. Wenn Sie darüber nachdenken, macht dies eine Menge Sinn, denn was dies tut, ist es legt mehr Wert auf das, was Händler tun vor kurzem. Exponential Moving Average (EMA) und Simple Moving Average (SMA) Seite an Seite Let8217s einen Blick auf die 4-Stunden-Chart von USDJPY zu markieren, wie ein einfacher gleitender Durchschnitt (SMA) und exponentiellen gleitenden Durchschnitt (EMA) nebeneinander schauen würde Auf einem Diagramm. Beachten Sie, wie die rote Linie (die 30 EMA) scheint näher zu sein als die blaue Linie (die 30 SMA). Dies bedeutet, dass es genauer repräsentiert die jüngsten Preis-Aktion. Sie können wahrscheinlich erraten, warum dies geschieht. It8217s, weil die exponentiellen gleitenden Durchschnitt mehr Gewicht auf das, was in letzter Zeit passiert ist. Beim Handel ist es viel wichtiger zu sehen, was Händler tun JETZT eher, was sie taten letzte Woche oder letzten Monat. Speichern Sie Ihren Fortschritt, indem Sie sich anmelden und die Lektion vollständig markieren


No comments:

Post a Comment